
R

C
B

P
a

b

c

d

e

f

a

A
R
R
1
A

K
B
M
P
M

C

1

f

D
P

0
d

Maturitas 65 (2010) 334–339

Contents lists available at ScienceDirect

Maturitas

journa l homepage: www.e lsev ier .com/ locate /matur i tas

eview

ontroversies concerning the use of phytoestrogens in menopause management:
ioavailability and metabolism

atricia de Cremouxa, Pascale Thisb,c, Guy Leclercqd, Yves Jacquote,f,∗

Unité de Pharmacologie Moléculaire, Institut Curie, 26 rue d’Ulm, 75248 Paris Cedex 05, France
Pôle Sénologie, Institut Curie, 26 rue d’Ulm, 75248 Paris Cedex 05, France
Centre de la Femme, Hôpital de Versailles, 177 rue de Versailles, 78157 Le-Chesnay Cedex, France
Laboratoire J.-C. Heuson de Cancérologie Mammaire, Université Libre de Bruxelles (U.L.B.), Institut Jules Bordet, 1000 Brussels, Belgium
Laboratoire des BioMolécules, CNRS – UMR 7203, Case Courrier 45, Université Pierre et Marie Curie Paris 6, 4 Place Jussieu, 75252 Paris Cedex 05, France
Laboratoire des BioMolécules, CNRS – UMR 7203, Ecole Normale Supérieure, 24 rue Lhomond, 75231 Paris Cedex 05, France

r t i c l e i n f o

rticle history:
eceived 22 October 2009
eceived in revised form
8 December 2009

a b s t r a c t

It has been proposed that the use of phytoestrogens (PE) in menopausal therapy could be beneficial to
woman health, particularly with respect to hot flushes. Indeed, PE may compensate the lack of endoge-
nous 17�-estradiol occurring during menopause. However, therapeutic benefits remain questionable, as
highlighted by recent publications. Indeed, data are often subjected to controversy since a number of
ccepted 18 December 2009

eywords:

exogenous and endogenous factors influencing the responsiveness of patients are not sufficiently taken
into account. In the present paper, we will discuss the role of bioavailability and metabolism in the
instability of individual response to PE.

© 2009 Elsevier Ireland Ltd. All rights reserved.
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. Introduction

In menopausal women, osteoporosis and atherosclerosis result
rom deep physiological modifications that result from the lack
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of production of 17�-estradiol by ovaries. Hormone Replacement
Therapy (HRT) that consists in taking estrogens to compensate
this lack appears sometimes necessary. In this context, extracts
from plants such as soybean, red clover or pueraria (kudzu), that
are known to be rich in phytoestrogens (PEs) and particularly in
flavones, flavanones, isoflavones and lignans (Fig. 1) are extensively

used. However, potential benefits of these compounds are subject
to controversies since their effect appear often poorly significant
and, moreover, may dependent on individuals [1–9]. In fact, uncer-
tainties concerning PE efficacy may be due to metabolism variations

http://www.sciencedirect.com/science/journal/03785122
http://www.elsevier.com/locate/maturitas
mailto:yves.jacquot@upmc.fr
dx.doi.org/10.1016/j.maturitas.2009.12.019
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Fig. 1. General structure of flavonoids and lignans.

rom one woman to another as well as to the lack of selectivity and
pecificity. In this first section, we focus on PE bioavailability and
etabolism, the latter being influenced by enzyme polymorphism,

iet and related gut bacteria. Based on recent publications, we
rgue in the present paper such obviousness.

. Bioavailability

Except for flavanols, most of PE are absorbed under their
lycoside form which is not easily assimilated by the intes-
ine and the stomach [10,11]. After a hydrolysis step by
ndogenous and exogenous (gut microflora) enzymes, they are
ransformed into aglycones, allowing therefore a more efficient
assing through the digestive barrier. Thus, the bioavailability
f flavonoids varies in function of the chemical structure (agly-
one/conjugated derivatives, chemical family) of the molecules
hat compose PE mixtures (exemplified in Ref. [12]) as well as
f the presence/absence of required specific bacterial enzymes
13].

PE interact strongly with plasmatic proteins such as albumin
ut slightly with lipoproteins [14]. This suggests that they may

nterfere, in the context of poly-therapies, with drug delivery and
learance. Moreover, these features are, in part, relevant to the poor
ioavailability and to the weak activity displayed by PE.

Remarkably, an unpredictable release of PE from fatty tissues
ay occur since the latter is a major site of storage for PEs. Weight

and therefore lipid) excess which occurs in 40% of women in
enopause may therefore correlate with an increase of PE in

atty tissues and, therefore, variable PE plasmatic concentrations
ue to unpredictable PE releases from fatty tissues to blood. Like-
ise, expression of aromatase whose activity (i.e. transformation

f androgens into estrogens) is highly expressed in adipose tissues,
ncreases as the body mass index (BMI) increases. Most PE, such
s genistein, enterolactone or enterodiol and some other diphe-

ols interfering with aromatase expression and activity as they are
ompetitive inhibitors [15,16], they could inhibit the endogenous
roduction of 17�-estradiol, inducing therefore opposite effects
han those required! Indeed, this aromatase inhibitory effect, sim-
lar to that induced by the aromatase inhibitors used in the context
as 65 (2010) 334–339 335

of breast cancer (i.e. exemestane, letrozole or anastrozole), may
logically increase osteoporosis, a disease usually observed in post-
menopausal women and against which PE are expected to be
active. Thus, body mass index (BMI) should be considered to deter-
mine PE dosages in the context of HRT. Of note, the aromatase
inhibitory effects displayed by PEs depending upon their chemi-
cal structure, the exact composition of PEs in preparations should
be precisely indicated. Amazingly, these observations suggest that
the anti-estrogenic component of PEs may depend on their aro-
matase inhibitory activity whereas their estrogenic activity would
depend on their estrogen receptor agonist activity. In a physiolog-
ical context, both effects may compensate each other (depending
on the chemical structure of PEs), explaining therefore why PEs are
weakly active in vivo when compared to their action in vitro.

3. Metabolism

3.1. Endogenous metabolism

3.1.1. Type I metabolism
Endogenous enzymes implied in type I (degradation)

metabolism are crucial for PE assimilation. A number of these
enzymes being subject to polymorphism and genetic instability,
the production of active metabolites may logically depend upon
the women’s genotype. The main enzymatic mechanism related to
type I metabolism are principally associated with deglycosylating
and CYP enzymes.

After deglycosylation by lactate-phlorizin-hydrolases (which
are present in the brush border of the small intestine [17]) or by
small intestine and liver �-glucosidases [18], CYP enzymes (CYP17,
CYPA1, CYPA2, CYPA4, CYPB6, CYPC9) degrade flavonoids into a
variety of metabolites according to various reactions such as dehy-
drogenation, hydroxylation or O-demethylation (Fig. 2) [19–22].
Depending upon polymorphism, CYP affect differently the bioavail-
ability of 17�-estradiol and flavonoids, making therefore bone
metabolism and protection against breast cancer variable from one
woman to one other, as observed in Japanese women [21]. In this
same context, it should be stressed that CYP17, CYPA2 and CYP2C17
polymorphisms may change metabolism of 17�-estradiol as well
as of PE and may increase the susceptibility of patients to breast
cancer, as shown in Thai women [23].

3.1.2. Type II metabolism
Type II (conjugation) metabolism contributes to the increase of

the urinary excretion of PEs. It occurs principally in intestine and
requires specific enzymes such as catechol-O-methyltransferase
(COMT), sulfotransferases (SULTs) and �-glucuronidases [24].

• O-methylation has been observed on the catechol moiety of
flavonoid derivatives such as 7-glucuronide quercetin and 3-O-
glucuronide quercetin. This reaction is catalyzed by COMT, an
enzyme that is subject to genetic polymorphism. Interestingly,
this feature corroborates bone mineral density changes. Even if
methyl transfer is, in this medical context, a minor route for PE
metabolism, it constitutes an alternative to sulfation [24].

• Cytosolic sulfotransferases (principally SULT1A1, SULT1A2,
SULT1A3 and SULT1C2 [25]) catalyze the transfer of sulfate ions
from 3′-phosphoadenosine-5′-phosphosulfate to the hydoxyl
in positions 7 or/and in position 4′ of flavonoids (Fig. 3). As
COMT, genetic polymorphism associated with SULTs modi-
fies bone mineral density [26]. Remarkably, sulfation sites are

decisive for estrogenicity: sulfation in position 4′ leads to a
modest estrogenicity whereas sulfation in position 7 induces
a stronger estrogenicity [27]. This observation suggests that
mono-sulfation/disulfation may have significant repercussions
on transcription. In this context, it is noteworthy that acti-
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d flavo
Fig. 2. Endogenous metabolism of flavanones an

vated SULT subtypes depend upon PE species and plasmatic
concentrations. For example, chrysin is sulfated by SULT1A1 at
low concentration whereas it is sulfated by SULT1A3 at higher
concentration [28]. Strikingly, SULTs are increased in hormone-
dependent tumors and have been suspected in cell proliferation
[25] by activating procarcinogen and promutagen xenobiotics.
Such an observation suggests that SULT inhibitors could be a pri-
ori beneficial and may lead to novel anticancer approaches. In
this regard, it is interesting to outline that flavon-5-ols, flavon-

3-ols, quercetin and resveratrol inhibit the activity of SULT1A1.
Unfortunately, the consequent increase of 17�-estradiol compro-
mises such perspectives [25,29]. Amazingly, these observations
suggest that PE degradation is different between tumoral and
normal tissues.

Fig. 3. Type II (conjugation) metabolism of flavano
nes (illustrated by naringenin) by CYP enzymes.

• Endogenous reticulum endoplasmic uridine diphosphoglu-
curonyltransferases (UGT1A1, UGT1A3, UGT1A6, UGT1A8 and
UGT1A9 isoforms) that facilitate the urinary and biliary elimi-
nation of metabolites after glucurono-conjugation in position 7
and 4′ of flavonoids are also subject to polymorphism, as high-
lighted with UGT1A3 [30]. In addition, free flavonoids can be
regenerated by bacterial �-glucuronidases, leading therefore to
entherohepatic recirculation and increase of PE half-life time [2].
3.2. Exogenous (gut microflora) metabolism

PE are easily metabolized by intestine bacteria through
O-deglycosylation, O-demethylation, dehydroxylation, hydrogena-
tion, lactonisation or ring cleavage reactions. Composed of more

nes (exemplified with 8-prenylnaringenin).
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F ). (b)
s

t
o
m
o
b

ig. 4. (a) Gut microflora metabolism of isoflavonoids (exemplified with daidzein
ecoisolariciresinol diglucoside).
han 400 different species, gut microflora depends upon age, ethnic
rigin, diet, intestine transit, pH, acetate production, endogenous
etabolism, as well as a number of pathologies. Amazingly, these

bservations support the concept of “in vivo gut microflora insta-
ility” and, therefore, PE metabolism instability.
Gut microflora metabolism of lignans (exemplified by matairesinol glucoside and
• As previously highlighted, O-deglycosylation is required for
efficient absorption of flavonoids. Catalyzed by a number of
Gram+/Gram− bacteria, this reaction occurs in the jejunum and
is partially achieved by bacterial �-glucosidases (Fig. 4a) [31–35].
To a lesser extend, C-deglycosylation occurs during the biocon-
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version of puerarin into daidzein by the strain PUE (Fig. 4a)
[36].
As observed with isoflavonoids and enterolignans, O-
demethylation reactions imply intestinal bacteria such as
bifidobacteria, Eubacterium limosum (Eubacterium sp. ARC-2) or
Ruminococcus productus (Fig. 4b) [37–39].
Dehydroxylation is relevant to isoflavonoids (after the reduc-
tion of the carbonyl in position 4 into the hydroxyl analog by
Eggerthella sp. Julong 732 or directly by the strain DZE, Fig. 4a)
and to enterolignans, as exemplified by the transformation of
2,3-bis(3,4-dihydroxybenzyl)butene-1,4-diol into enterodiol by
Clostridium species and Eggerthella lenta (Fig. 4b). Remarkably,
Eggerthella sp. SDG-2 and the strain ARC-1 participate in enantios-
elective dehydroxylation. Eggerthella sp. SDG-2 dehydroxylates
(−) dihydroxyenterolactone whereas the strain ARC-1 dehydrox-
ylates (+) dihydroxyenterolactone [40].
The reduction of the 2–3 double-bond of a number of flavonoids is
mediated by bacteria that utilize hydrogen such as methane pro-
ducing and sulfate reducing bacteria. According to this statement,
Clostridia species [41,42] (Fig. 4a) or Eubacterium rectale [42]
afford the active metabolites equol, O-DMA, enterodiol, entero-
lactone and 8-prenylnaringenin [39,40,43].
Lactonisation and ring cleavage reactions are two additional
metabolism pathways that are specific of lignans and flavonoids,
respectively. Whereas the first is observed in the presence of Lac-
tonifactor longoviformis gen. nov., sp. nov., the second is mediated
by clostridia species or Eubacterium ramulus Julong 601 [44] with,
however, a preference for flavonoids with a hydroxyl in position
5 (Fig. 4a and b) [34].

Amazingly, these observations suggest that not only enzyme
olymorphism but also gut microflora population may have crucial
epercussions on the release of active PE. Gut microflora depend-
ng upon diet habits, the latter may have crucial repercussions on
E-responsiveness [42,45,46].

Most of PE metabolites produced by intestinal bacteria being
ctive, their stereochemistry must be also taken into account. For
xample, the bacterial metabolism of isoflavones [36] leads to
he very active only metabolite S-equol [34]. It is of note that
-equol (Fig. 4a) binds to ER� with a 13 times higher affinity
han R-equol and a two times higher than (±) equol [41,47]. ER�
istribution in tissues depending upon the age and the pathophys-

ological context of patients, these factors should be also taken into
ccount.

Hence, the activity of intestinal bacteria with regard to possible
umor promoting effects in women with breast cancer predisposi-
ions seems likely, the latter being implied in the biosynthesis of
ctive metabolites.

O-Dma is also a very active metabolite. O-Dma is produced by
0–90% of the population, whereas equol is produced by 30–40% of
he population (20–30% of adults from western populations and
0% of Japanese women), suggesting strong variations towards
herapeutic responsiveness and toxic effects [48]. Thus, isoflavone
onsumers should be systematically classified as “equol producers”
r “equol non-producer” as well as “O-Dma producers” or “O-Dma
on-producers” [1,35]. At least, it is of note that O-DMA producers
ave a 6% higher total (leg and head) bone mineral density when
ompared to non-O-DMA producers [49].

. Conclusion
In the present review, we have explored the metabolic fac-
ors that make in vivo pharmacology of PE extremely variable and
enefits resulting from their use quite ambiguous and most of
ime unconclusive. In respect to PE metabolism discussed in this
as 65 (2010) 334–339

section, it would be necessary to consider the physiopathological
context, diet habits, ethnic origins as well as the phenotype and gut
microflora population (based on questionnaire) for each women.
Such requests being arduous and difficult to implement, innocu-
ousness and efficacy of PE will be subject to debates, since moreover
chemical nature of PE in commercial botanical extracts are not well
defined. The presence of the products as aglycones or conjugates
should be precisely stated. In this aim, dosage methods should be
perfected. Indeed, Boniglia et al. [50] have recently shown by high-
performance liquide chromatography coupled with an UV detector
that most preparations do not contain the content of isoflavones
declared by suppliers. Thus, the exact qualitative/quantitative com-
position of PE in such preparations would be precisely provided by
the supplier, as for drugs. Finally, we recommend to patients to use
PE under a strict medical survey.
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